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The enhancement mechanism of the third-order nonlinear optical response of cavity polaritons is theoreti-
cally investigated through the size dependence of the exciton system. Cavity quantum electrodynamics �cavity
QED� effect strongly affects the balance between absorption saturation and induced absorption, depending on
the system size, through the modification of the level structure of exciton- and biexciton-cavity coupled states.
This triggers a drastic change in the optical nonlinearity, which is another essential effect of the cavity QED to
enhance the optical nonlinearity.
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I. INTRODUCTION

Nonlinearity control is one of the most essential functions
of a cavity system, and the strong-coupling regime realizable
in cavity quantum electrodynamics �cavity QED� has pro-
duced various nonlinear optical phenomena.1–3 Earlier stud-
ies of cavity QED have focused on the coupling of a cavity
photon and a first excited state, such as two-level atoms and
exciton states in semiconductors, where the main role of the
cavity is to amplify the intracavity light field, leading to the
enhancement of optical nonlinearity. However, the nonlinear-
ity of such systems decreases with an increase in the system
size of N, e.g., the number of atoms, owing to the decrease in
anharmonicity.4 This becomes a crucial problem in actual
experiments conducted with the aim of device applications
because it is difficult to accurately control N when it is small.
Recently, it has been shown that the size dependence of the
nonlinearity of a system with a second excited state such as a
biexciton state can remain sufficiently strong even for N
�1 if the system parameters are carefully designed.5 In ad-
dition, the application of biexciton-cavity coupling to
entangled-photon generation has also been proposed.6,7 Thus,
the current focus of cavity QED studies is changing from an
ideal two-level-like system to a more realistic many-level
system with many degrees of freedom.

For a cavity QED system with many degrees of freedom,
the naive scenario of enhancing the nonlinearity by the
simple amplification of intracavity light field no longer holds
true. Although the nonlinearity enhancement for ideal two-
level systems is subject to the light-field amplification and
damping rates, the whole scenario drastically changes for
many-level systems with many degrees of freedom, and
more comprehensive enhancement mechanism emerges.
Generally, the strength of the third-order nonlinearity is
dominated largely by the balance between contributions with
opposite signs, namely, the contributions from ground-state–
one-exciton-state transition �absorption saturation� and those
from one-exciton-state–two-exciton-state transition �induced
absorption�. For a system with many degrees of freedom, the
change in level structure, resulting from size change and/or
biexciton formation, strongly modulates the above balance
and the size dependence of the nonlinearity.8 If such a system
is placed within a cavity, the exciton-cavity system in the

strong-coupling regime forms one- and two-polariton states,
and their level structures are then drastically changed by the
size of the exciton system. These results strongly indicate
that we can control the optical nonlinearity by manipulating
the level structures of cavity polaritons and biexcitons by
adjusting the size and system parameters of the exciton-
cavity system. In this study, we therefore demonstrate the
effects of the formation of cavity polaritons and biexcitons
on the size dependence of the nonlinearity; this reveals an-
other essential function of the cavity QED to enhance the
optical nonlinearity.

The rest of this paper is organized as follows. In Sec. II,
we formulate an exciton-cavity system, forming cavity po-
laritons and biexcitons, and the optical master equation in the
framework of cavity polaritons. In Sec. III, we analyze in
detail the third-order nonlinear optical response of the cavity
polaritons. In Sec. IV, we summarize our results.

II. THEORETICAL MODEL

As a model system, we consider an exciton-cavity system,
as depicted in Fig. 1�a�, where a � /2 cavity is assumed and
the exciton system is placed at the center of the cavity. Pump
and probe beams are normally incident on the surface of the
cavity. In this study, we focus on the signal emitted normally
on the same side as the incident lights. For simplicity, in
these optical processes, we ignore the nonradiative decay of
excitons.

FIG. 1. Schematic of �a� pump-probe assignment and �b� forma-
tion of cavity polaritons. k and � are the quantum numbers of one-
and two-exciton states, respectively. �g is the exciton-cavity
coupling.
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The Hamiltonian for the fundamental mode of a � /2 cav-
ity field is given by

ĤC = ��cĉ
†ĉ , �1�

where ĉ �ĉ†� is the annihilation �creation� operator of the
cavity photon with frequency �c. The interaction Hamil-
tonian describing the exciton-cavity coupling can be written
as

Ĥint = ��
k

gk�ĉ†b̂k + ĉb̂k
†� , �2�

where k is the quantum number of exciton states, gk is the

exciton-cavity coupling rate, and b̂k �b̂k
†� is the exciton anni-

hilation �creation� operator. When the exciton-cavity cou-
pling is larger than the spontaneous emission of excitons and
the cavity damping, excitons are strongly coupled with cav-
ity photons, and they form the so-called cavity polaritons
�Fig. 1�b��.

For the exciton system, as a first step, we adopt a one-
dimensional discrete-lattice model of an exciton because it
provides tractable solutions of bound and unbound two-
exciton states as a complete set. Further, we ignore the spin
degree of freedom of excitons. This model is sufficient to
demonstrate the qualitative aspects of the essential physics of
this study.9 The Hamiltonian of the exciton system can be
described as10

ĤX = ��
�

b̂�
†b̂� − t�

�

�b̂�+1
† b̂� + b̂�

†b̂�+1� − ��
�

b̂�
†b�+1

† b̂�+1b̂�,

�3�

where b� �b�
†� is the exciton annihilation �creation� operator

at the �th site, � is the excitation energy of each site, and t is
the transfer energy of an exciton from a site to neighboring
sites. The last term is the attractive interaction between two
neighboring excitons, leading to the biexciton formation.
With the boundary condition that the exciton states are zero
at sites �=0 and �=N+1, the eigenenergy and eigenstate for
the one-exciton state are, respectively, given by

Ek = � − 2t cos ka , �4�

�k� =� 2

N + 1�
�

sin�k�a�b̂�
†�0� , �5�

where a is the lattice constant and N is the size of the exciton
system. Eigenstates for a two-exciton state can be written as
���=��	mC�,m

��� �� ,m�, where �� ,m�	��� � �m� and the states
of �m ,m� for any m are excluded. This prohibition of two
excitons occupying the same site corresponds to the Pauli
exclusion principle. The coefficients C�,m

��� are numerically
calculated and determined, so that 
����� forms a complete
system. The biexciton binding energy is then uniquely deter-
mined by t and �. In particular, the binding energy of the
biexciton with the lowest energy is denoted by �B. The k
representation of ��� is obtained simply by Fourier trans-
forming C�,m

��� to Ck,k�
��� .

The eigenstates of the exciton-cavity system can now be

obtained by diagonalizing the Hamiltonian Ĥsys= ĤX+ ĤC

+ Ĥint. Rewriting the exciton operator b̂k using the Hubbard
operators as11

b̂k = �G��k� + �
k�

�k��b̂k�k,k���k���k,k�� + ¯ , �6�

the eigenstates can be expressed, in form, as

�1p�
 = �x�k;0� 
 �c�G;1� , �7�

�2p� = �xx�k,k�;0� + �xc�k;1� + �cc�G;2� , �8�

where �G� is the ground state and the separation by a semi-
colon denotes �exciton;photon�. �1p�− is the lower cavity-
polariton branch �LPB� and �1p�+ is the upper cavity-
polariton branch �UPB�. �2p� is the two-cavity-polariton state
consisting of the two-exciton state �k ,k� ;0�, the one-exciton–
one-photon state �k ;1�, and the two-photon state �G ;2�. In
this study, we consider the third-order nonlinear optical re-
sponse of cavity polaritons and therefore cavity-polariton
states up to �2p� are required. �gk is dependent on N through

the dipole transition matrix of an exciton ���G�b̂��k� and is

proportional to ���G�b̂��k�. �g�k for �2p� can be calculated

from �g�k= �k ;1�Ĥint�� ;0�.
The nonlinear optical response of the exciton-cavity sys-

tem can be analyzed by using the optical master equation and
the input-output theory. The master equation is given by

d�̂

dt
=

1

i�
�Ĥsys + Ĥext, �̂� + 
�2ĉ†�̂ĉ − ĉ†ĉ�̂ − �̂ĉ†ĉ�

+ �
k

��2b̂k
†�̂b̂k − b̂k

†b̂k�̂ − �̂b̂k
†b̂k� , �9�

where 
 is the cavity damping rate and � is the spontaneous

emission rate of excitons into noncavity modes. Ĥext is the
interaction Hamiltonian between intracavity photons and
classical cw lights, �pump�t� and �probe�t�, given by

Ĥext = i��2
ĉ��pump�t� + �probe�t�� + H.c. �10�

Considering Ĥext as a perturbation term, we calculate the
third-order density operator of ��3�. As is well known, the
optical nonlinearity is evaluated by the susceptibility �. In
exciton-cavity systems, however, there is no counterpart of
�. Therefore, we directly evaluate the third-order output field
by using the input-output theory. According to the input-
output theory,12 the third-order output field can be described
as

�output
�3� = �2
 Tr�ĉ�̂�3�� . �11�

In the pump-probe calculation, the pump energy is tuned to
the LPB.

III. RESULTS

In this section, we analyze the third-order nonlinear opti-
cal response of cavity polaritons. First, we calculate the
eigenenergies of one-cavity-polariton states and two-cavity-
polariton states in terms of the dependence on exciton system
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size. Second, we calculate the third-order nonlinear optical
response of cavity polaritons for different system sizes and
show that the level-structure change in cavity polaritons
strongly affects the nonlinear strength and there exists an
optimal size of exciton system where the nonlinear strength
is maximal. Finally, we discuss the enhancement mechanism
of nonlinearity at the optimal size of the exciton system.

Figure 2 shows the eigenenergies E1p for �1p� and E2p for
�2p� as functions of N. The vertical axes are expressed so as
to correspond to the probe energy, ��probe−�c� /�c. The ex-
citon parameters are t /��c=0.0033 and �B /��c=0.001 33,
so that we can discuss the convergence of exciton states for
relatively small N. �gk is set to g1 /�c=0.0005 at N=2. There
is a large difference between the level structures of 1p and
2p states, especially near the LPB for small N. This large
difference mainly arises from two factors. One is the change
in the level structure of two-exciton states owing to the biex-
citon formation. In particular, for small N, two-exciton states
are sparsely distributed and the biexciton binding energy
changes with N. As a result, the level structure of two-
exciton states is strongly affected by the size change in the
region of small N. Another is the difference between exciton-
cavity coupling in one- and two-exciton states, �gk and �g�k,
owing to the difference between the dipole transition matri-
ces in these two states. The difference between the level
structures changes the balance between the contributions
from �1p� and �2p� states and therefore strongly affects the
strength of nonlinearity.

Figure 3�a� shows the spectra of Im���3�� for system sizes
of N=5, 11, 21, 41, and 81. The calculation parameters are
� /�c=0.00033 and 
 /�c=0.0005, corresponding to a
quality factor of Q=1000, and the other parameters are the
same as those in Fig. 2. For all sizes N in Fig. 3�a�, one
can find the positive and negative peaks. These peaks
arise from the balance between the contributions from
ground-state–1p-state transitions and those from
1p-state–2p-state transitions. The negative contributions to
Im���3�� are due to the absorption saturation in the
ground-state–1p-state transition and the positive contribu-
tions to Im���3�� are due to the induced absorption in the
1p-state–2p-state transition. As a result of the balance of
these contributions, the nonlinear strength and spectral shape
of Im���3�� are intricately determined. The dominant peaks

are the negative peaks from the LPB at 
−0.001 and the
UPB at 
0.001; these peaks are maximized near the LPB.
The spectra of ���3��2 near the LPB are shown in Fig. 3�b�. As
N increases, the Rabi splitting gradually broadens and the
peak height changes. With the present parameters, the non-
linear strength becomes maximal for N=11 and drastically
decreases for a further increase in N. In particular, the non-
linear strength for N=81 decreases by a factor of 10−3 as
compared to that for N=11. This result implies that there
exists an optimal size of the exciton system for the given
parameters, where the optical nonlinearity of the cavity po-
laritons is maximal, and that an oversized exciton system
leads to a drastic decrease in the optical nonlinearity.

For a given set of parameters, there is thus a specific
system size of excitons, where the nonlinear strength is
maximal. Figure 4�a� shows the maximal strength ���3��max

2

obtained near the LPB as a function of N for several values
of �B. The calculation parameters except �B are the same as
those in Fig. 3. As �B increases, the size dependence of
���3��max

2 changes, and the local maximum, corresponding to
an optimal size, gradually increases �indicated by arrows�.
For comparison, ���3��max

2 for �B=0 �without biexcitons� is
plotted with a solid line. In the absence of biexciton, the size
dependence of ���3��max

2 is qualitatively the same as the results
of Ref. 4, and for N�1 it gradually and monotonically de-
creases to zero. Intriguingly, ���3��max

2 for �B=0 can be larger
than ���3��max

2 obtained from biexcitons with small �B for
large N. The biexciton with small �B thus adversely de-
creases the optical nonlinearity, as a result of the balance
between the contributions from the absorption saturation and
induced absorption. Figure 4�b� shows the dependence of
���3��max

2 on N for several values of �, where �B is constant.
The increase in � leads to a decrease in the optical nonlinear
strength as well as of the optimal system size of excitons
�indicated by arrow�. The main effect of � on decrease in
nonlinearity is then to balance out the contributions from the
absorption saturation and induced absorption, which is more
likely caused by a broadened linewidth. In practice, both �B

FIG. 2. E1p and E2p as functions of N. The solid lines indicate
E2p−��c−LPB and the dashed lines indicate E1p−��c. The exciton
parameters are t /��c=0.0033 and �B /��c=0.001 33. �g is set to
g1 /�c=0.0005 at N=2.

FIG. 3. �a� Im���3�� and �b� ���3��2 for N=5, 11, 21, 41, and 81.
The cavity QED parameters are g1 /�c=0.0005 �for N=2�, 
 /�c

=0.0005 �Q=1000�, and � /�c=0.000 166. The other parameters
are the same as those in Fig. 2.
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and � concurrently affect the size dependence of the optical
nonlinearity. Since a typical size of the lattice constant is a

0.5 nm, our results indicate that a size difference of a few
nanometers and a slight difference of the parameters might
lead to a decrease in the nonlinear strength by a factor of
10−1. Thus, the exciton-cavity parameters modify the balance
between the contributions from absorption saturation and in-
duced absorption, and this leads to a drastic change in the
size dependence of the optical nonlinearity. Therefore, to
educe the strong optical nonlinearities of the exciton-cavity
system, especially the biexciton nonlinearity, careful control
of the exciton-cavity parameters is required.

Finally, we discuss the enhancement mechanism of non-
linearity at an optimal size of the exciton system. In the
previous studies, we have clarified that efficient biexciton-
cavity coupling can be achieved at the level anticrossing of a
biexciton and cavity polaritons, where a cavity bipolariton
state is formed by a superposition state of a biexciton and
two-cavity polaritons described, in form, as6,7 �2p�

�B�
 ��k ,k� ;0�+ �k ;1�+ �G ;2��, where �B� is the biexciton
state. This means that the biexciton remains almost bare and
is weakly coupled with cavity photons through the cavity
polaritons. It is known that the cavity bipolariton is stable
only for �g��B. The dependence of �B and 2�g1 on N is
shown in Fig. 5. The intersections of �B and 2�g1 are in
good agreement with the optimal sizes shown in Fig. 4�a�,
and the level anticrossings are realized at these points,13 as
can be seen near the LPB at N=11 in Fig. 2�b�. Owing to the
level anticrossing, the overlap of energy levels between the
cavity bipolariton and the LPB becomes small and thus their
contributions cannot balance out. As a result, the maximal
nonlinearity can be achieved. The realization of maximal
nonlinearity in the biexciton-cavity coupling can thus be re-
duced to the realization of the cavity bipolariton with level
anticrossing. If the level anticrossing points for larger N are
required, we have only to achieve a small dipole transition

���G�b̂��k�, so that the curve of 2�g1 becomes gradual and

the intersections of �B and 2�g1 shift to larger N. This can be
achieved by selecting a material in which the transition be-
tween �G� and �k� is very small or almost forbidden.5

IV. CONCLUSIONS AND DISCUSSION

In conclusion, we have theoretically investigated the
third-order nonlinear optical response of cavity polaritons in
terms of the size dependence of the exciton system and re-
vealed that the control of the balance between the contribu-
tions from the absorption saturation and induced absorption
is another essential function of the cavity QED in order to
enhance the optical nonlinearity. The size dependence of the
nonlinearity can be drastically changed by a slight difference
of the exciton-cavity parameters, especially �B and �. We
have shown that there exists a specific size of the exciton
system, characterized by �B
2�g, where the maximal non-
linear strength is realized.

Throughout this work, we have focused on especial pa-
rameters so as to show the convergence of exciton states for
relatively small N. Here we provide and discuss two real
systems, as examples, in which the obtained results can be
implemented. The first is the excitons in bundled J aggre-
gates, such as Langmuir-Blodgett film, confined in a micro-
cavity. J aggregates can be treated as a one-dimensional
Frenkel-type exciton system, and therefore our model is di-
rectly applicable. In fact, cavity polaritons formed in J ag-
gregates have been investigated.14 To our knowledge, stable
biexctions in J aggregates have not been reported; therefore,
relatively small size of J aggregates would be useful to en-
hance the optical nonlinearity of cavity polariton.

Another is the excitons in a quantum well confined in a
microcavity, if we focus on a zero center-of-mass motion of
two-exciton states, with the extension of our model appropri-
ately including the relative in-plane motions of the two con-
stituent excitons. In particular, spectra of CuCl thin films are
well reproduced by the tight-binding exciton model dis-
cussed in this work. CuCl has a biexciton with large binding
energy ��B
30 meV�, and recently a giant Rabi splitting of
2�g�100 meV has been experimentally observed in CuCl
microcavity.15 If the exciton-cavity system can be designed
so as to realize �B
2�g, the strong enhancement of optical
nonlinearity due to the level anticrossing could be expected.

The size dependence of nonlinearity might be more dras-
tically changed by the dimension of the exciton system, and

FIG. 4. Dependence of ���3��max
2 on N for different �B and �. �a�

�=�1 and �B is variable and �b� �B=8�1 and � is variable, where
�1	0.000 166��c and �1	0.001 33��c. The other parameters are
the same as those in Fig. 3.

FIG. 5. Dependence of �B and 2�g1 on N. The calculation pa-
rameters except �B are the same as those in Fig. 2.
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therefore further analyses of higher-dimensional system
would be interesting. We hope that the results in this study
help to identify some of the practical requirements for an
optimal exciton system size.
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